List Edge Colourings of Some 1-Factorable Multigraphs

نویسندگان

  • Mark N. Ellingham
  • Luis A. Goddyn
چکیده

The List Edge Colouring Conjecture asserts that, given any multigraph G with chromatic index k and any set system fSe : e 2 E(G)g with each jSej = k, we can choose elements se 2 Se such that se 6 = sf whenever e and f are adjacent edges. Using a technique of Alon and Tarsi which involves the graph monomial Q fxu ? xv : uv 2 Eg of an oriented graph, we verify this conjecture for certain families of 1-factorable multigraphs, including 1-factorable planar graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some maximum multigraphs and adge/vertex distance colourings

Shannon–Vizing–type problems concerning the upper bound for a distance chromatic index of multigraphs G in terms of the maximum degree ∆(G) are studied. Conjectures generalizing those related to the strong chromatic index are presented. The chromatic d–index and chromatic d–number of paths, cycles, trees and some hypercubes are determined. Among hypercubes, however, the exact order of their gro...

متن کامل

Partitions and Edge Colourings of Multigraphs

Erdős and Lovász conjectured in 1968 that for every graph G with χ(G) > ω(G) and any two integers s, t ≥ 2 with s+ t = χ(G)+1, there is a partition (S, T ) of the vertex set V (G) such that χ(G[S]) ≥ s and χ(G[T ]) ≥ t. Except for a few cases, this conjecture is still unsolved. In this note we prove the conjecture for line graphs of multigraphs.

متن کامل

List Edge and List Total Colourings of Multigraphs

This paper exploits the remarkable new method of Galvin (J. Combin. Theory Ser. B 63 (1995), 153 158), who proved that the list edge chromatic number /$list(G) of a bipartite multigraph G equals its edge chromatic number /$(G). It is now proved here that if every edge e=uw of a bipartite multigraph G is assigned a list of at least max[d(u), d(w)] colours, then G can be edge-coloured with each e...

متن کامل

Balanced list edge-colourings of bipartite graphs

Galvin solved the Dinitz conjecture by proving that bipartite graphs are ∆edge-choosable. We improve Galvin’s method and deduce from any colouring of the edges of bipartite graph G some further list edge-colouring properties of G. In particular, for bipartite graphs, it follows from the existence of balanced bipartite edge-colourings that balanced list edge-colourings exist as well. While the k...

متن کامل

All Regular Multigraphs of Even Order and High Degree Are 1-factorable

Plantholt and Tipnis (1991) proved that for any even integer r, a regular multigraph G with even order n, multiplicity μ(G) ≤ r and degree high relative to n and r is 1-factorable. Here we extend this result to include the case when r is any odd integer. Häggkvist and Perković and Reed (1997) proved that the One-factorization Conjecture for simple graphs is asymptotically true. Our techniques y...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Combinatorica

دوره 16  شماره 

صفحات  -

تاریخ انتشار 1996